

High Availability (Version 12.0) October 30, 2024 Page i

Table of Contents

1. Introduction .. 1

2. High availability and throughput .. 2

2.1 Multiple Availability Zone architecture... 2

2.2 Application load balancers .. 3

2.3 Cell-based architecture / customer segments .. 3

2.4 Autoscaling and pre-scaling .. 6

2.5 Throttling (AWS WAF and Queue-it requests analysis) 6

2.6 CloudFront and caching .. 7

3. Fault tolerance .. 8

3.1 Micro services architecture and circuit breaker design pattern 8

3.2 Retry, timeout, and exponential backoff ... 8

3.3 Durability of data ... 8

3.4 Security groups and principle of least privilege .. 8

3.5 Fire drill days and fault tolerance tests .. 9

4. Fast recovery and backup strategy ... 10

4.1 Health checking and continuous monitoring .. 10

4.2 Infrastructure as code (AWS CloudFormation) .. 10

4.3 Data redundancy ... 10

4.4 AMI Amazon Image .. 10

4.5 Incident management process ... 11

5. Appendix ... 12

5.1 Queue-it White Papers .. 12

5.2 Change Record ... 13

High Availability (Version 12.0) October 30, 2024 Page 1

1. Introduction
The Queue-it High Availability white paper outlines how our infrastructure is built for high

performance during massive load and ensures reliable uptime and continuous operation

across all AWS availability zones.

This document covers the strategies we use to ensure high availability and throughput,

including load balancing, auto- and pre-scaling, customer segments, throttling, and caching.

You’ll discover how we’ve incorporated fault tolerance into our platform, including

microservices architecture, data durability, security groups, and fire drill days. Finally, we’ll

review our fast recovery and backup strategy, including health checks, data redundancy, and

incident management processes.

This white paper is intended for IT security architects, system architects, and solution

architects with knowledge of SaaS models and AWS components.

High Availability (Version 12.0) October 30, 2024 Page 2

2. High availability and throughput
AWS gives its customers services to deploy high availability resilient IT architecture. AWS has

designed its systems to tolerate system or hardware failures with minimal customer impact.

Queue-it leverages AWS high availability capabilities by running Queue-it instances from

multiple Amazon AWS data centers in different regions globally.

2.1 Multiple Availability Zone architecture

Queue-it deploys its solution on multiple AWS data centers to increase system availability and

continue serving customers even in the event of a total failure on some datacenters.

AWS regions are designed with multiple Availability Zones (AZs). Each AZ group contains one

or more discrete data centers. Each Availability Zone is designed as an independent failure

zone, physically separated within a typical metropolitan region from other AZs.

Queue-it is deployed in regions with at least 3 Availability Zones. The following regions and

Availability Zone are used:

• EU West (Ireland)

o eu-west-1a

o eu-west-1b

o eu-west-1c

• US West (Oregon)

o us-west-2a

o us-west-2b

o us-west-2c

• Asia Pacific North East (Tokyo)

o ap-northeast-1b

o ap-northeast-1c

o ap-northeast-1d

• South America (São Paulo)

o Sa-east-1
o

This deployment allows Queue-it to be available even in the unlikely event of two availability

zones being unavailable at the same time.

High Availability (Version 12.0) October 30, 2024 Page 3

Figure 1 : Availability Zones

2.2 Application load balancers

AWS Application Load Balancers (ALBs) are region-based services and can distribute the load

to virtual servers in Amazon's Elastic Compute Cloud (EC2 instances) located in any of the AZs

within its region.

Queue-it uses AWS ALBs to distribute the load to servers on different AZs and automatically

deregister any unhealthy server instances.

The ALB uses Queue-it health check API to monitor the health of QueueFront instances

deployed on EC2. It dynamically registers and deregisters new instances, directing traffic to

healthy instances.

2.3 Cell-based architecture / customer segments

Queue-it is designed to isolate potential attacks on a specific customer waiting room from

impacting other customers. Each Queue-it customer has at least one dedicated subdomain

used to serve their waiting room pages (customerid.queue-it.net where “customerid” is the

GO Queue-it Platform account the customer owns).

Queue-it groups customers in at least three segments per region based on their subdomains

and has three independent partitions continuously running QueueFront runtime. Each

customer segment is mapped to a partition with a dedicated load balancer entry point

handling traffic for those customers and distributing this load on corresponding partition’s

EC2 instances (Web servers running QueueFront).

High Availability (Version 12.0) October 30, 2024 Page 4

All these partitions are deployed in the three Availability Zones as shown in the following

diagram. This segmentation prevents one customer segment traffic from impacting

customers in other segments.

For example, traffic for customers in segment A in Ireland is managed by Load balancer Par-

EU-West-1-A and underlying Par-EU-West-1-A partition QueueFront EC2 instances. Traffic for

customers in segment B is managed by Par-EU-West-1-B load balancer and underlying EC2

instances. So, customers in segment B are not impacted even if all partition A EC2 instances

(on all three availability zones) are down.

Figure 2: Queue-it customer segments, load balancers, deployment partitions, and

availability zones

In the case of a DDoS attack on a given customer segment (which could include a single

customer having a high visibility sale or registration, aka event), the Queue-it operations team

can quickly point this segment to a partition without a QueueFront stack deployed.

The following figure shows how a single customer having a DDoS attack is isolated on one

segment of its own and mapped to a partition without QueueFront stack.

High Availability (Version 12.0) October 30, 2024 Page 5

Figure 3 Sending traffic from one segment to an empty partition

Queue-it operations team has built tools to easily move a customer to a segment or map a

segment of customers to a given partition shown below.

Figure 4: Mapping a customer to a segment

Figure 5: Mapping a customer segment to a partition

This cell-based architecture also allows Queue-it to plan and execute the deployment of new

QueueFront releases in a controlled manner and reduce the risk of impacting all customers in

a given region. New releases are deployed and evaluated on a single partition (impacting one

customer segment) and only after successful testing the deployment is applied to other

partitions.

High Availability (Version 12.0) October 30, 2024 Page 6

2.4 Autoscaling and pre-scaling

Queue-it uses AWS scaling groups to scale up / down resources (like EC2 instances running

QueueFront). Queue-it uses an aggressive auto-scaling strategy to automatically spawn

multiple new EC2 instances to serve requests from unplanned traffic peaks. Autoscaling will

be triggered based on multiple metrics of running EC2 instances. It is configured to over-

provision new instances, prioritizing availability of our system over cost.

Figure 6: Autoscaling groups

In addition to auto-scaling, Queue-it works in tight collaboration with our customers to pre-

scale (manually scaling horizontally and vertically) ahead of planned events with expected

peaks. This allows us to manage peaks without the need to trigger autoscaling, which could

take 2-5 minutes to have all new EC2 instances up and running. Queue-it has performed a

load test with 1 million users joining the queue per minute for 2 subsequent minutes and the

infrastructure scaled to this load resulting in 0 503 responses from ALBs and 2 million inflows

correctly registered on the test waiting room.

2.5 Throttling (AWS WAF and Queue-it request analysis)

All Queue-it waiting room access is protected by AWS WAF (Web Application Firewall) and AWS

Shield Advanced. Shield Advanced safeguards against both network level as well as well-

known application-level DDoS attacks.

Queue-it has implemented waiting room specific WAF Web ACL rules to counter and block

HTTP layer attacks specific to waiting room logic, for example how many requests per minute

can occur for a single Queue ID, regardless of IP used etc.

High Availability (Version 12.0) October 30, 2024 Page 7

For special events with very high bot activity such as product drops, Queue-it’s SRE team uses

additional tailored AWS WAF Web ACL rules to counter these bots and throttle down the

number of requests to the given waiting room based on different parameters. This throttling

helps mitigate DDoS attacks and increases the overall availability of our systems in addition to

assuring fair access to resources.

For requests allowed by both Shield and WAF Web ACL rules, QueueFront servers apply

tailored request analysis and can redirect suspicious requests to a challenge page. This occurs

when certain parameters are triggered, such as an unusually high number of Queue IDs

requested by a single IP address in a short period of time.

Request analysis helps mitigate the risk of bots and automated scripts which could impact an

entire customer’s segment resources by requiring them to solve a challenge before entering a

waiting room and getting a Queue ID.

2.6 CloudFront and caching

Queue-it uses Amazon’s CloudFront CDN to cache static assets like images. When a customer

customizes the waiting room theme, all static assets will automatically be deployed to

CloudFront. When end-users download the pages, these assets will be served from the closest

CloudFront Edge server. This will increase the speed and throughput of overall waiting room

page load and increase availability by preventing QueueFront infrastructure from needing to

serve static assets, reducing the number of requests managed by QueueFront considerably.

QueueFront also has a tailored cache service layer to reduce requests to databases

(PostgreSQL and DynamoDB). In addition to the custom cache, PostgreSQL is set up with a

writer and reader instance, to account for the read patterns for some tables and offload the

writer instance from these requests, increasing overall availability and throughput.

High Availability (Version 12.0) October 30, 2024 Page 8

3. Fault tolerance

3.1 Micro services architecture and circuit breaker design

pattern

Queue-it’s virtual waiting room solution is composed of multiple micro services designed to

reduce the impact of one component / micro service not responding (limiting the radius

blast). If a micro service is faulty and not responding in time, this careful design for failure

assures that only a set of limited services are impacted (the ones calling it directly), which

avoids cascading errors to upstream services.

The circuit breaker design pattern is used to stop calling a faulty service after several retries to

avoid impacting this service further. It cuts requests to the faulty service and serves cached

data. It opens back the circuit to make API calls only when there’s a higher chance that the

service can respond correctly and within the expected times.

3.2 Retry, timeout, and exponential backoff

In addition to the circuit breaker pattern, Queue-it software uses different strategies to

reduce the impact of a faulty component and provide a better chance for recovery. To

increase the likelihood of self-healing or issue resolution before the next API call occurs, we

implement backoff strategies by reducing the frequency of calls to underlying services.

As an example, this is done on waiting room page status API calls to get specific Queue ID

information (expected waiting time, number of Queue IDs ahead, etc.) and this API responds

with the next time it should be called by the waiting room JavaScript.

The Queue page will also gracefully reduce functionality by showing the latest correct API

response (cached data) if this API is not responding within the set timeout.

3.3 Durability of data

Queue-it uses AWS S3 service to store and back important data up. AWS S3 service has

99.999999999% durability achieved by redundantly storing the data on different devices on

different Availability Zones. Queue-it also uses multi region storage for some important data

to increase availability and durability.

3.4 Security groups and principle of least privilege

Queue-it services and components are isolated with security groups / virtual firewalls (AWS

VPCs) providing access only to a set of expected authorized clients to reduce the chance of

attacking services. Internet-facing services like QueueFront servers exist behind AWS Load

balancer with WAF (Web Application Firewall) and underlying backend services. These services

are only accessible via VPNs or from within VPCs / internal IP addresses that are effectively

protecting them from external attacks.

High Availability (Version 12.0) October 30, 2024 Page 9

3.5 Fire drill days and fault tolerance tests

The Queue-it DevOps team conducts fire drill days to simulate various system faults and

ensure the backup and restore processes are efficient and accurate.

Fire drills evaluate overall system resilience by simulating faults on various parts of the

system and testing the DevOps team’s ability to detect the issue, accurately assess its impact

and potentially fix it by harnessing and improving on automated healing system properties

and / or relevant processes to fix the issue.

High Availability (Version 12.0) October 30, 2024 Page 10

4. Fast recovery and backup strategy

4.1 Health checking and continuous monitoring

Queue-it uses an external service to monitor the different Queue segments that are up and

running. A real-time status report is publicly available at http://status.queue-it.net/.

Also, the Queue-it’s DevOps team has designed a comprehensive alert system based on

different system metrics to ensure prompt response to any detected faults.

In addition to external party monitoring and advanced level of internal application monitoring

and alerts, hundreds of Queue-it customers spanning different time zones are offered the

best system availability checks.

QueueFront infrastructure receives millions of requests to Queue pages 24/7, 365 days a year,

where our customers are closely monitoring their events daily. That makes issues become

immediately apparent, which gives little time to detect any potential issues.

The Queue-it’s support team (in Australia, Denmark, USA) is available 24/7 to help customers

and report any incidents to the DevOps team for quick recovery.

4.2 Infrastructure as code (AWS CloudFormation)

Queue-it uses AWS best practices to deploy AWS services using CloudFormation, to automate

the creation of infrastructure stack and eliminate the risk of human errors.

This provides Queue-it with tools for fast recovery in case of

major incidents. 4.3 Data redundancy

Queue-it uses PostgreSQL and Dynamo DB with managed backups (RDS backup and Dynamo

DB multi-AZ read / write). PostgreSQL is backed up for 30 days and its data (waiting room /

custom theme data) can be restored to a specific second within the 30-day retention period.

In addition to the backups which allow for a quick recovery within a region, Queue-it also

automatically takes snapshots of the database every hour. In case RDS is no longer available

on an active region, the snapshots are accessible from another region with RDS PostgreSQL

setup in passive mode and can be activated within minutes.

4.4 AMI Amazon Image

Quick setup of QueueFront EC2 instances image / required server software. Queue-it uses

Amazon AMI images to quickly boot EC2 instances with the software and configuration

needed. This helps reduce recovery time if needed, since DevOps would not have to install

needed software individually but just boot an instance based on an image containing all

necessary software to deploy QueueFront.

http://status.queue-it.net/

High Availability (Version 12.0) October 30, 2024 Page 11

4.5 Incident management process

Queue-it development and operational processes promote continuous improvements. This

includes incident management process with a postmortem meeting to learn how to eliminate

the root cause of the incident or improve response time, eliminating or at least reducing time

for a fast recovery.

High Availability (Version 12.0) October 30, 2024 Page 12

5. Appendix

5.1 Queue-it White Papers

Below is the full list of other Queue-it white papers available digitally:

1. API

2. Bots and Abuse Management

3. Custom Theme

4. Health Check

5. High Availability

6. Load Test

7. Mobile App

8. Notifications and Logs

9. QuickStart

10. Security Considerations

11. Technical Integration

12. User Management

Queue-it white papers can also be found on the GO Platform under the “White papers and

guides” menu link.

https://docs.queue-it.net/en/api-white-paper.pdf
https://docs.queue-it.net/en/bots-and-abuse-white-paper.pdf
https://docs.queue-it.net/en/custom-theme-white-paper.pdf
https://docs.queue-it.net/en/health-check-white-paper.pdf
https://docs.queue-it.net/en/high-availability-white-paper.pdf
https://docs.queue-it.net/en/load-test-white-paper.pdf
https://docs.queue-it.net/en/mobile-app-integration-white-paper.pdf
https://docs.queue-it.net/en/notifications-and-logs-white-paper.pdf
https://docs.queue-it.net/en/quick-start-white-paper.pdf
https://docs.queue-it.net/en/security-considerations-white-paper.pdf
https://docs.queue-it.net/en/technical-integration-white-paper.pdf
https://docs.queue-it.net/en/user-management-white-paper.pdf
https://docs.queue-it.net/en/user-management-white-paper.pdf
https://docs.queue-it.net/en/user-management-white-paper.pdf

High Availability (Version 12.0) October 30, 2024 Page 13

5.2 Change Record

Date Author Version Change Reference

2024-10-15 Muhammad Jamil

Chaudhary

12 Full review and adding South America region, Introduction

and Advanced Shield detail

2022-11-21 Ismail Taouti 11.3 Added information about the latest load test.

Updated information about DB recovery

2022-09-27 Ismail Taouti 11.2 Added coherent diagrams reflecting Queue-it brand style

2022-09-10

Ismail Taouti 11.1 Updated adding further clarifications and diagrams to

different sections

2022-08-25

Ismail Taouti 11 Changes to include information about High availability of

Queue-it engine

2018-11-24 Andrew Morris 10.1 Conversion to new template

	1. Introduction
	2. High availability and throughput
	2.1 Multiple Availability Zone architecture
	2.2 Application load balancers
	2.3 Cell-based architecture / customer segments
	2.4 Autoscaling and pre-scaling
	2.5 Throttling (AWS WAF and Queue-it request analysis)
	2.6 CloudFront and caching

	3. Fault tolerance
	3.1 Micro services architecture and circuit breaker design pattern
	3.2 Retry, timeout, and exponential backoff
	3.3 Durability of data
	3.4 Security groups and principle of least privilege
	3.5 Fire drill days and fault tolerance tests

	4. Fast recovery and backup strategy
	4.1 Health checking and continuous monitoring
	4.2 Infrastructure as code (AWS CloudFormation)
	This provides Queue-it with tools for fast recovery in case of major incidents. 4.3 Data redundancy
	4.4 AMI Amazon Image
	4.5 Incident management process

	5. Appendix
	5.1 Queue-it White Papers
	5.2 Change Record

